人気ブログランキング | 話題のタグを見る

体重と今日食べたもの

k1segawa.exblog.jp

ダイエット

ブログトップ
給付以外で消費税減額をする場合

日本のGDPが約500兆円だとし、その5割が消費税がかかる品目だと仮定すると、ざっくりと10%で計算する。
500兆円*0.5*0.1=25兆円

給付対象者が1000万人とすると、10万円給付で計算する。
10万円*1000万=1兆円

消費税だと毎年減額するのと違い、一時給付金なら単年ですむため、政府の側に立つと税金の額が全然違う。

消費税だと10%から5%の半分に下げても、
25兆円/2=12.5兆円

毎年これだけかかるので、政府としては厳しい。
国民も5%でもあまり楽になった気がしない。

国民の最低限の生活を守るという観点からは、低所得者への給付は効果が明確であり、消費税が広く浅く徴税する事から、極端な減額をしない限り効果は実感しづらいという面がある。

費用対効果としては一時給付が優れている。

では、消費税以外で国民の生活を楽にするような政府補助はしていないのか、というとそんなことは全くない。

●小麦
輸入小麦の政府売渡価格の改定について:農林水産省
https://www.maff.go.jp/j/press/nousan/boeki/230912.html

令和5年4月期の輸入小麦の政府売渡価格について(230314-1.pdf)
https://www.maff.go.jp/j/press/nousan/boeki/attach/pdf/230314-1.pdf

●ガソリン
ガソリン補助金とは 2024年4月末まで延長へ 175円程度に抑制 | ツギノジダイ
https://smbiz.asahi.com/article/14918345

●国民健康保険
国民健康保険の財源の仕組みは?
医療費の財源構成 国民健康保険の加入者が医療機関にかかった際、窓口で支払う自己負担分を除く医療費は、国民健康保険が支払っています(=給付費)。 この給付費は、原則として前期高齢者交付金(※1)を除いた残りの50%を国・県からの補助金で、残りの50%を加入者の保険料でまかなう仕組みとなっています。2022/10/19

上記のように、主要食糧の「小麦」、燃料の「ガソリン」、「医療費の半分」を国が補助している。

これも国民の生活を楽にするために、広く浅く補助しているのであまり実感されないが、大変な費用を政府は支出している。

なんだかんだ言ってるが海外資産の売却益で、国防のための発展途上国への支援も、政府の資産投資があってこそ出来る事で、そのかじ取りをやってる日銀が国民の安全保障としての資金面でサポートしている事になる。

既存インフラの道路、水道、橋梁等のメンテナンスも欠かす事は出来ないが、安定して利用できている事を振り返って考えれば、如何に予算をかけているか知れる。

日本の平和な安寧の中でどれほどそれを享受していたかは、ロシアやイスラエルの戦争が起こって、パンデミックが起こって、初めて実感している。




# by k1segawa | 2023-12-13 00:28 | Comments(0)
(2023/12/10追記)
おー、2日経ってちゃんと動き出したな~
[Google Analytics 4] Google Analytics の延長 [ストリーム追加] (12/8)_a0034780_10055863.png
エキサイトブログでは、測定用タグはテンプレ外に自動追加してるのだろうな。
念のため、左下の「設定」歯車アイコン-[データの収集と修正]-[データの保持]を2か月→14か月へ変更しておいた。
無料でこの期間分析できるなら十分。
[Google Analytics 4] Google Analytics の延長 [ストリーム追加] (12/8)_a0034780_10442544.png
(ここまで)

Google Analyticsの設定をしてあったはずなのだが、アクセスするとエラーになる。

どうもGoogle Analytics 4になって設定項目が変わったようだ。

Google Analytics のHPの自分の分析画面の右上に、[データストリーム云々]という赤ラベルの文字が表示されている。

それをクリックすると、最近は48時間以内で分析のためのスキャンが行われていないとの事。

エキサイトブログの、基本設定の一番下に、「Google Analytics 4:測定ID」というのが追加されている。

そして、[データストリーム云々]をクリックした画面で、ストリームを実行したのちに出る画面にも測定IDというのが表示される。

これを設定して、2日ほどまた放置してみよう。

# by k1segawa | 2023-12-08 03:42 | Comments(0)
こちらのサイト様で気になる記事があり、それを深堀りしていった結果、今の高校の化学・物理を理解していない事が分かり、なおかつChatGPTの回答も参考にして、原子核や電子、波動関数の事が全然わかってない(わかってるつもりだった)事がわかった。

この中の、「◆サイエンス - 新型電子顕微鏡で鉄鋼粒界の特異な原子配列を発見 ―高性能鉄鋼材料の開発を加速―|プレスリリース | UTokyo-Eng」という記事で、次のサイト様にある、鉄の原子配列が本当はとても奇異な配列だった事を示す画像を見て、「原子配列と分子配列とは何が違うのだろう、分子だって原子の集まりだから原子配列と言えるのでは?」と思った事に端を発する。

[ChatGPT] 原子配列と分子配列 [高校の化学] (12/8)_a0034780_01105014.png
鉄の金属結晶だから、通常の格子配列かと思ったが、そうではないようだ。

それはそれで、興味深いが、ここで、タイトルのように原子配列とは鉄原子(鉄分子は無い)がこのように並んでいる。
では水分子の「分子配列」とは、どのようなものなのだろう?

分子が並んでいるのだから、H2O(H-O-H)が組になってどう配置されるのか?

そもそも原子配列と分子配列は何が違うのか、そこから疑問だった。

このサイト様の回答だと、

原子配列は、原子が構成要素の物質の配列を原子配列、
分子配列は、分子が構成要素の物質の配列を分子配列という。

つまり金属は金属原子単体で結晶という固体を形作るから、金属は原子配列。
氷は水分子自体が破壊されて氷になるのではなく、水分子の形のまま氷の結晶となるので、分子配列。

では水分子は液体の時、分子配列になっているのか、それとも分子単体でふよふよ漂っているのか。
このサイト様には水分子は液体の時、他の4つの水分子と「水素結合」という隙間の多いゆるやかな分子配列になっているらしい。
液体の時は分子配列の隙間に他の水分子が入り込む事が出来、そのため氷の結晶よりも体積が少ない。つまり5個で出来ている分子配列の端の分子が、よその分子配列の隙間に片足を突っ込んでいるような状態だ。

では、水素結合とはなんだろう。
それはこちらのサイトに書いてあった。
水素を仲立ちとして分子が引き合う

電気陰性度や共有電子対という言葉で説明しているが、さっぱりだ。



この共有電子対で例として出てくるフッ素が、電子7個というところに引っ掛かりを覚えた。

「あれ?なんで一つ足りないような感じで図が書いてあるの?」

「足りないって何?」

フッ素って電子7個と釣り合うように電荷+の陽子7個で中和してるんじゃないのかな~
と思って、フッ素の原子核の構成を調べてみた。

載ってない。

共有電子対のサイトに「多くの原子は最外殻電子が1〜7個だけど、電子を共有することでお互いに8個の電子を持って閉殻になれます」とあり、8個無いとダメなようだ。あと電子殻。

以下のサイトに、電子殻に触れている。

「L殻には最大8個電子が入る」とある。

あー、電子の軌道がいくつかあって、L殻、何とか殻、などのように名前が決まってたな~


ここにあるように、KLMNなどと名称がある。

返ってフッ素ってL殻に8個入るのに、7個しかないってことなのかな。

一番簡単な水素という原子はどうなってるのかな。
これを見ると、陽子1個と電子1個だ。

そういえば、陽子って電子に比べて、でっかいのになんで電子1個分の電荷しか持っていないんだろう?

フッ素は原子番号9とある。

なら、電子も9個あるはず?陽子も9個?じゃあなんで7個って出てきたんだろう?

そもそも原子番号9って陽子と何が関係するんだ?中性子も含めた数?ただの順番?

ここでChatGPTに質問した。

まずはそもそも、
User
なぜ陽子と電子の電荷は等しいのですか
ChatGPT

陽子と電子の電荷が等しいのは、電気の基本的な性質に関する量子力学的な理論に基づいています。物理学者ポール・ディラック(Paul Dirac)によって提案されたディラックの方程式は、電子の振る舞いを記述するための方程式であり、この方程式が電子の電荷とスピンを決定します。

ディラックの方程式によれば、電子はスピン1/2を持つフェルミ粒子であり、電荷は電子の場合には単位の電気素量(電子素量)であるとされています。電気素量(e)は約1.602 x 10^(-19) クーロンであり、電子の電荷はその電気素量の負の倍数として定義されています。

陽子もまた電気素量の整数倍の電荷を持っています。陽子の電荷は電子の電荷と同じ大きさであるが、符号が逆であり、正の電荷を持っています。

このようにして、電子と陽子の電荷が等しく、電気素量の整数倍であることは、標準的な粒子物理学の理論に基づいています。


User
もう少し中学生でもわかるように説明してください
ChatGPT

もちろんです!電子と陽子の電荷が等しいことは、物理学の法則に基づいています。電子はマイナスの電荷を持っていて、その大きさは小さな単位(電気素量)です。一方、陽子はプラスの電荷を持っていますが、その大きさも同じく電気素量の倍数です。

考え方として、電子の電荷が1つの「りんご」だとすると、陽子の電荷も同じ大きさの「りんご」ですが、符号(プラスかマイナスか)が逆なんです。つまり、電子の電荷が-1のりんごなら、陽子の電荷は+1のりんごと考えることができます。

このように、電子と陽子の電荷がお互いに等しく、大きさが電気素量の整数倍であることは、自然の法則に基づくもので、これによって原子や物質が安定して存在できるようになっています。


User
それは実験で確かめられましたか?
ChatGPT

はい、電子と陽子の電荷が等しいことは実験的に確かめられています。初めての実験的な証拠は、オイスタイン・ローレンツ(Ole Rømer)によるもので、彼は1700年代後半に電気の実験を行いました。しかし、正確な電荷の値を知るためには、20世紀初頭になるまでにさまざまな実験と理論の発展が必要でした。

最終的に、ミルリカンによる油滴実験(Robert A. Millikanによる)が重要な役割を果たしました。彼は精密な実験を通じて電子の電荷の値を測定し、その結果は電気素量に非常に近い値となりました。この実験は1909年から1913年にかけて行われ、電子の電荷がおおよそ1.602 x 10^(-19) クーロンであることを示しました。

陽子の電荷についても同様で、精密な実験と粒子物理学の理論によって、電子の電荷と同じ大きさで逆の符号を持つことが確かめられました。これによって、電子と陽子の電荷がほぼ等しいことが確立されました。


User
それでは、もし陽子と電子の電荷が等しくなければどんな不都合が発生しますか?
ChatGPT

もし陽子と電子の電荷が等しくない場合、多くの不都合が発生するでしょう。以下はその一部です:

  1. 原子の安定性の喪失: 原子は電子がプラス電荷を持つ陽子に引き寄せられることで安定しています。もし電子と陽子の電荷が異なっていた場合、この引力がバランスを欠くことになり、原子が安定的に存在することが難しくなります。これは物質の基本的な性質に大きな影響を与えます。

  2. 化学反応の乱れ: 化学反応は電子の移動によって起こります。もし電子と陽子の電荷が異なっていた場合、電子が原子核に引き寄せられすぎたり離れすぎたりすることがあり、これが化学反応の進行に混乱を招く可能性があります。

  3. 電気的な不均衡: 電子と陽子の電荷が異なる場合、物質が不均衡な電気的な性質を持つことになります。これは静電気や電磁気学的な効果に大きな変化をもたらし、我々の日常の経験とは異なる電気的な現象が発生するかもしれません。

  4. 宇宙の進化の影響: 宇宙の進化も影響を受ける可能性があります。原子や分子の形成、星の形成、宇宙の構造など、宇宙全体の進化に関わるプロセスが電子と陽子の電荷のバランスに依存しています。

総じて、電子と陽子の電荷が等しいことは、我々が理解している自然の法則が安定して成り立つために必要な条件です。その等しい電荷が、原子や物質が存在し、安定して相互作用する基盤となっています。


自然法則なのか~実は電子は2倍の個数回ってて電荷は半分だった、なんてないかと思ったら実験で確かめられているのね。


この辺でもう授業で習った事をすべて忘れている。

当たり前かもしれない質問をする。

User
なぜ電子は陽子に引き寄せられて吸収されないで回っているのですか?
ChatGPT

電子が原子核の中に吸収されずに回っているのは、電子と原子核との間に働く力が、電子を原子核に引き寄せるだけでなく、同時に電子が持つ角運動量による遠心力も働いているためです。この状態でバランスがとれ、電子が安定して回り続けることができます。

具体的には、電子は原子核に引力で引き寄せられます。しかし、同時に電子は速さを持ち、その速さによる遠心力が働きます。これらの力がバランスすると、電子は安定な軌道を描きながら原子核の周りを回ります。この状態を考えると、電子が吸収されずに安定して回り続けるのは、これらの力が適切に釣り合っているからです。

この電子の周りを回る軌道は、量子力学的な概念に基づいており、波動関数や軌道の確率密度を通じて電子の位置を記述します。これにより、電子が特定のエネルギー準位に留まり、原子が安定な状態を維持することができます。

このようにして、電子が原子核に吸収されずに回り続けるメカニズムは、古典的な力学だけでなく、量子力学的な理論にも基づいています。


あら、遠心力なのね。そしてこんなところで波動関数が。そもそも電子の位置を確定しようとして、確率分布なので、波動関数が出てきたんだっけ。


User
電子は原子核の周りをどれくらいのスピードで回っているのですか?
ChatGPT

電子が原子核の周りを回る速さは、原子の種類や電子が占めている軌道のエネルギー準位に依存します。電子が原子核の周りを回る速さは、量子力学の概念に基づいており、古典的な軌道運動のように想像するのは難しいですが、代わりに確率密度や波動関数が使われます。

一般的に、電子が原子核の周りの軌道で回る速さは、相対論的な効果を無視した場合、おおよそ光速度の約1/137倍程度です。これは光速に比べてかなり遅い速さですが、原子の微小なスケールではこれが相当速いことになります。相対論的な効果を考慮すると、電子の速さはもう少し複雑になります。

ただし、これはあくまで平均的な速さであり、電子の動きは確率的であり波動関数によって表現されるため、具体的な位置や速さは厳密には決まっていません。電子の動きは量子力学的な確率的な性質を持つため、位置や速さを同時に精確に知ることはできません(位置と運動量の不確定性原理)。


おー、30万km/sの137分の1か。2000km/s以上か。それはものすごい速度だな。そして半径が極小だからどんなに速い回転なんだ。


User
電子の遠心力はどれくらいの物ですか?
ChatGPT

電子の遠心力は、古典的な力学においては次のように表されます。

遠心力 F遠心 は、次の式で表されます。

F遠心=mv2r

ここで:

  • m は電子の質量
  • v は電子の速さ
  • r は電子が回る軌道の半径

量子力学的な描像では、電子が波動として振る舞うため、厳密には古典的な軌道運動を持たないことに注意が必要です。ただし、定常状態の波動関数を使用して期待値を計算することで、古典的な軌道との類似性を見ることができます。

また、相対論的な効果が現れる場合、速さが光速に近づくため v が光速になります。この場合、遠心力の式は相対論的な修正が必要ですが、通常の原子内の電子の速さが光速に近いわけではないため、通常の状況では相対論的な補正は小さくなります。


あー、計算は分かるけど、電荷がいくら小さくとも電子の重さと半径を考えるとものすごい大きな遠心力がかかっているのだろうな。そして、それを引きつけている、電荷による電磁力もものすごく強いはず。でなければ原子の電子と原子核がバラバラになってしまう。


User
フッ素は何個の中性子と陽子で出来ていますか?
ChatGPT

フッ素の原子番号は9です。原子番号は元素の中にある陽子の数を示します。フッ素は通常、陽子と中性子の組み合わせで構成されるので、安定な同位体を考えると、その中性子の数を求めることができます。

通常のフッ素の同位体は、9個の陽子と10個の中性子を持つもの(^19F)と、9個の陽子と11個の中性子を持つもの(^20F)があります。これにより、フッ素は陽子と中性子の合計で19個または20個の核粒子から構成されます。


やっぱり、原子番号は陽子の数だったか。すっかり忘れてる。それにしても同位体って中性子の数が違うのか。それも忘れてる。


結局フッ素は9個陽子があるから、電子も9個で、L殻が8個配置できるだけで、内側の殻に2個配置できるのだろう。で、L殻に7個しか配置してないから、共有電子対という、1個足りないために不安定な分子が、くっついて安定するわけだ。


◆◆◆

ん~、ChatGPTを全面的に信用するわけではないけど、自分の専門外の事については検証のしようがない(とてもめんどい)。

これは一般の人が専門外の事をChatGPTに聞いて全面的に信用してしまうのも、自分に置き換えると仕方ないと思える。


やっぱりAIを信奉してしまう事、そしてそれが危ない事。

それを身をもってわかった。


各国の政府や情報機関・企業がAIを制限、抑制するのは当然だ。



# by k1segawa | 2023-12-08 02:09 | ChatGPT,GPT-4 | Comments(0)
22H2でProgram Files(Program Files (x86)ではない)の下にある実行形式を、右クリックのパスのコピーでコピー後、ショートカット作成時の参照先にペーストすると、
C:\Program Files\~
で入力されているにもかかわらず、実際にショートカット実行すると、
C:\Program Files (x86)\~ にファイルがありませんとエラーになってしまう。
ショートカットのアイコンも任意の実行形式のアイコンとなってしまう。

実際に実行後に、再度プロパティで見ても、
C:\Program Files\~
となっており、
編集すると、2回目ぐらいに、初めて
C:\Program Files (x86)\~
と表示されて、その時に変更するとやっと正しいパスになる。

ショートカットのアイコンも正しいアイコンになる。

なんでこんな機能に修正をかけているのかな?
もっと重要なところがあるだろうに。

これは23H2では直っているのかな?

ついでに、%windir%system32はショートカットの作成できないエリアになっている。
スクリーンキーボードとかOS標準のツールのショートカットが作れなくなっている。
これは改悪じゃないのかな?
セキュリティ上の問題なら、そもそもOS標準の機能の場合、まずユーザに確認するダイアログ出すようにショートカット初回実行時にチェック入れればいいんじゃないの?どうして機能自体を不可能にするかな?

Windows 11の開発者は、全然Windows10の機能をわかってないな~



# by k1segawa | 2023-11-29 12:23 | Comments(0)
こちらによると、1週間で1.5kg体重が減って1日当たり500kcal消費すればよいとある。


またこちらには脂肪は1kg当たり9000kcalで、その2割が水分や細胞質を形成する物質との事。
2か月で8kgダイエットしたのと、その後1.5か月でさらに2kgダイエットした。

これらから、8kg落ちた体重に脂肪と2割の水分+細胞質が含まれたものが存在したと考えると、
単純に8kgには水分+細胞質+脂肪が含まれていたと考え、水分+細胞質も一緒に落ちたとする。

すると8kgには8×9000kcal×0.8=57600kcalが含まれていたことになり、これが2か月=60日で消費したと考えると、
8×9000×0.8/60=960kcal/日となり、1日当たり960kcal消費していたことになる。

これは上記のサイト様の500kcalと比べてずいぶんと大きい値だ。
それも上記サイト様は運動もしていたとの事。単に低炭水化物ダイエットだったらしく、食料の総摂取量(kcalではなく量自体)は減っていないと思われる。

2か月8kgダイエットは、「高タンパク・低炭水化物・脂質不変で、総摂取量減少かつ運動無しのダイエット」だったので、相当効率が良かったと見える。
上記サイト様の「低炭水化物かつ運動ありダイエット」よりずっと効果が高かった。
特に現在も続いている、食料の「総摂取量」が減ったのが良かった。

※ もちろん最初の1週間くらいはあまり体重も減らなかったが、トータルで「平均」960kcal/日ものダイエットが実践出来た。

そして2か月で、ほぼ腰回りや臀部、胸部付近の体形がスリムになり、一回り以上の細いサイズの衣服が着れるようになった(ここまで太ったと認識する前の、年齢相当の体形)。

その後の2kg/1.5か月でゆっくりとしたペースになり、現在はさらにゆっくりとした1kg/2ヵ月が目標だ。

体形を形作っていた脂肪はほぼ落ち、今後は腹筋による腹部と、もも上げによる臀部の身体改造、しかしこれは内臓脂肪が筋肉に置き換わるので体重には影響せず、カロリーを消費して落とすので、少しずつしか変化しない。

なので、あと減っても数kgがせいぜいだろう。

今後は体重よりも体形の変化に重点を置く形となる。

「高タンパク・低炭水化物・脂質不変で、総摂取量減少かつ運動無しのダイエット」は、前回の記事を参照。
[ChatGPT] 炭水化物を減らしたんぱく質を増やす [炭水化物ダイエットの理論] (10/2) : 体重と今日食べたもの



# by k1segawa | 2023-11-26 17:10 | Comments(0)

by k1segawa